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A SELECTION THEOREM IN METRIC TREES
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(Communicated by Jonathan M. Borwein)

Abstract. In this paper, we show that nonempty closed convex subsets of a
metric tree enjoy many properties shared by convex subsets of Hilbert spaces
and admissible subsets of hyperconvex spaces. Furthermore, we prove that a
set-valued mapping T ∗ of a metric tree M with convex values has a selection
T : M → M for which d(T (x), T (y)) ≤ dH(T ∗(x), T ∗(y)) for each x, y ∈ M .
Here by dH we mean the Hausdroff distance. Many applications of this result
are given.

1. Introduction

The study of injective envelopes of metric spaces, also known as metric trees
(R-trees or T-theory), has its motivation in many subdisciplines of mathematics
as well as biology/medicine and computer science. Its relationship with biology
and medicine stems from the construction of phylogenetic trees [24]. Concepts
of “string matching” in computer science are closely related with the structure of
metric trees [5]. In the definition of an ordinary tree all the edges are assumed to
have the same length, and therefore the metric is not often stressed. A metric tree
is a generalization of an ordinary tree which allows for different length edges, thus
emphasizing the behavior of free actions on metric trees. (For more details see [22],
[23].) Metric trees were first introduced by J. Tits [26] in 1977. A metric tree is
a metric space (M, d) such that for every x, y in M there is a unique arc between
x and y, and this arc is isometric to an interval in R. For example, a connected
graph without a loop is a metric tree. One basic property of metric trees is their
one-dimensionality. Around the same time period, while studying t-RNA molecules
of the E. Coli bacterium, M. Eigen raised several questions which led A. Dress [11],
[12] to construct metric trees (named as T-theory). Metric trees also arise naturally
in the study of group isometries of hyperbolic spaces. For metric properties of trees
we refer to [10]. Topological characterization of metric trees were explored in [20]
and [21], where it was proved that for a separable metric space (M, d) the following
are equivalent:

1. M admits an equivalent metric ρ such that (M, ρ) is a metric tree.
2. M is locally arcwise connected and uniquely arcwise connected.
Throughout this paper, we will make use of the hypercconvexity of metric trees.

First let us recall the definition of a hyperconvex metric space.
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Definition 1.1. A metric space (M, d) is said to be hyperconvex if
⋂

iεI B(xi; ri) �=
∅ for any collection (B(xi; ri))i∈I of closed balls in M for which d(xi, xj) ≤ ri + rj ,
for any i, j ∈ I.

This notion was first introduced by Aronszajn and Panitchpakdi in [3], where it
is shown that a metric space is hyperconvex if and only if it is injective with respect
to nonexpansive mappings. Later Isbell [13] showed that every metric space has an
injective hull, therefore every metric space is isometric with a subspace of a minimal
hyperconvex space. Hyperconvex metric spaces are complete and connected [16].
The simplest example of hyperconvex space is the set of real numbers R or a finite-
dimensional real Banach space endowed with the maximum norm. While Hilbert
space l2 fails to be hyperconvex, the spaces L∞ and l∞ are hyperconvex.

There is a close connection between hyperconvex spaces and metric trees. In
[2], authors take the definition of a metric tree from A. Dress and show that every
complete metric tree is hyperconvex. On the other hand, in [18] using the definition
of an R-tree given by J. Tits, it is shown that a metric space M is a complete R-
tree if and only if M is hyperconvex with unique metric segments. For more about
hyperconvex spaces and fixed point theorems in hyperconvex spaces we refer to [15]
and [16]. In this paper we focus on external hyperconvexity and utilize this concept
to obtain a selection theorem for a set-valued function on a metric tree.

2. Basic definitions and results

We begin by describing the relevant notation. For a subset C of a metric space
M , we denote the ε-neighborhood of C by Nε(C),

Nε(C) = {x ∈ M : dist(x, C) ≤ ε},
where dist(x, C) = inf{d(x, c); c ∈ C}.

Definition 2.1. A subset C of a metric space M is said to be externally hyperconvex
relative to M if, given any family of points {xα}α∈Γ in M and a family of {rα}α∈Γ

of real numbers satisfying

d(xα, xβ) ≤ rα + rβ and dist(xα, C) ≤ rα

for any α, β ∈ Γ, then it follows that
⋂

α∈Γ B(xα; rα) ∩ C �= ∅.

Note that, in the above definition, centers of the balls {xα} are not necessarily
taken in C. This concept was originally introduced by Aronszajn and Panitchpakti
in their seminal paper [3], where they have shown that:

1. Any admissible subset of a hyperconvex space M is externally hyperconvex
relative to M .

2. The externally hyperconvex subsets of M are proximinal (i.e., if C is externally
hyperconvex relative to M and if x ∈ M , then there exists c∗ ∈ C such that
d(x, c∗) = dist(x, C)).

It is known that not every hyperconvex space is externally hyperconvex [17].
Throughout this paper we use B(M) to denote the family of all nonempty bounded
subsets of M . We will put the Hausdorff metric dH on B(M). As usual, the Haus-
dorff metric is defined as

dH(A, B) = inf{ε > 0 : A ⊂ Nε(B) and B ⊂ Nε(A)}.
Let T ∗ : M → B(M) be a set-valued function. A selection is a map T : M → M
such that T (x) ∈ T ∗(x) for all x in M . Selection theorems appear in a variety
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of mathematical problems (or many problems in mathematics can be rephrased as
selection problems). Depending on the context, one usually considers selections
with some additional properties such as “continuous”, “measurable”, “nonexpan-
sive,” etc. For example in [25], R. Sine has a selection theorem for nonexpansive
maps T ∗ : M → A(M), where A(M) is the family of admissible subsets of the
hyperconvex space M . For more on selection, and Michael’s selection theorems in
particular, we refer to [6]. Selection theorems are also utilized in problems related
to the extension of operators. One such example is due to M. Zippin [27], where
by using Michael’s continuous-selection theorem he obtains an extension theorem
concerning linear maps from subspaces of c0 into C(K), with K being compact and
Hausdorff. In [16], a selection theorem was proved for set-valued mapping of a hy-
perconvex metric space M which takes values in the space of nonempty externally
hyperconvex subsets H (relative to M). Our purpose here is to prove a similar
theorem in the context of metric trees.

Since a metric tree is a space in which there is only one path between two points
x and y, this would imply that if z is a point between x and y, by which we mean
if d(x, z) + d(z, y) = d(x, y), then we know that z is actually on the path between
x and y. This will motivate the next concept of a metric interval.

Definition 2.2. Let (M, d) be a metric space and let x, y ∈ M . An arc from x to
y is the image of a topological embedding α : [a, b] → M of a closed interval [a, b] of
R such that α(a) = x and α(b) = y. A geodesic segment from x to y is the image
of an isometric embedding α : [a, b] → M such that α(a) = x and α(b) = y. The
geodesic segment will be called a metric segment and denoted by [x, y] throughout
this work.

Now we are ready to define a metric tree.

Definition 2.3. A metric tree is a nonempty metric space M satisfying:
(a) Any two points of x, y ∈ M , where x and y are the endpoints of a metric

segment [x, y].
(b) If x, y, z ∈ M , then [x, y] ∩ [x, z] = [x, w] for some w ∈ M (i.e., if we have

two metric segments with a common endpoint, then their intersection is a metric
segment).

(c) If x, y, z ∈ M and [x, y] ∩ [y, z] = {y}, then [x, y] ∪ [y, z] = [x, z] (i.e., if two
metric segments intersect in a single point, then their union is a metric segment).

Next we give some basic properties of metric segments.

Lemma 2.1. Let (M, d) be a metric space and x, y ∈ M , with x �= y.
1. If z ∈ [x, y], then [x, z] ⊂ [x, y].
2. If M is a metric tree, then for any z ∈ M , there is a unique w ∈ [x, y] such

that
[x, z] ∩ [y, z] = [w, z].

The proof is classical and may be found in [8].

Definition 2.4. Let M be a metric tree and C ⊂ M . We say C is convex if for all
x, y ∈ C we have [x, y] ⊂ C.

Clearly, a metric tree M and ∅ are convex. Also, any closed ball B(a, r) = {z ∈
M : d(a, z) ≤ r} in a metric tree is also convex. To see this, take two arbitrary
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elements x, y of B(a, r) and let z ∈ [x, y]. From the above lemma, there exists a
unique w ∈ [x, y] such that

[x, a] ∩ [y, a] = [w, a].

Since [x, y] = [x, w] ∪ [w, y], we have z ∈ [x, w] or z ∈ [w, y]. Without loss of
generality, assume z ∈ [x, w]. Then

d(a, z) ≤ d(a, w) + d(w, z) ≤ d(a, w) + d(w, z) + d(x, z)

= d(a, w) + d(x, w) = d(a, x) ≤ r ,

which implies z ∈ B(a, r).
The following notations will be referenced throughout this paper. Let (M, d) be

a metric tree and let A be a nonempty bounded subset of M . Set

(1) co(A) =
⋂

{B : B is a closed ball and A ⊂ B}.

The subset A is called admissible if co(A) = A (i.e., A is an intersection of closed
balls). Let A(M) denote the collection of admissible subsets in M and let C(M)
denote the collection of all closed convex subsets of M . We set

(2) conv(A) =
⋂

{B : B is a convex subset of M such that A ⊆ B}.

Since closed balls are convex, we have A(M) ⊂ C(M). Moreover, this is a proper
inclusion. To see this, we need to make a few observations. First, if one has x �= y
with [x, y] ⊂ B(a, r) and m is the midpoint of [x, y], then

B

(
m,

d(x, y)
2

)
⊂ B(a, r)

which implies B(m, d(x,y)
2 ) ⊂ co([x, y]). Indeed, considering z ∈ B(m, d(x,y)

2 ), using
the properties of metric trees, we have d(a, w) + d(w, y) = d(a, y) or

d(a, w) + d(w, m) + d(m, y) = d(a, y) ≤ r,

which implies that d(a, w) + d(w, m) ≤ r − d(x, y)/2. The triangle inequality will
then imply

d(a, z) ≤ d(a, m) + d(m, z) ≤ r − d(x, y)
2

+
d(x, y)

2
and therefore z ∈ B(a, r), and from the definition of cov([x, y]) we also have z ∈
co([x, y]). Moreover closed unit balls in a metric tree may not be compact. Indeed,
take a closed unit ball in R

2 with a radial metric. Looking at x, y ∈ B(0, 1) with
x �= y, then the radial distance between x and y is 2. Also any metric segment in
B(0, 1) is contained in co([x, y]), which implies that co([x, y]) is not compact for
this distance. But [x, y] is compact and convex. This example was suggested to us
by Kirk [19]. For more examples, we suggest the wonderful paper by Bestvina [7].

The following result due to Baillon [4] is crucial in our investigation of C(M).

Theorem 2.1 ([4]). Let M be a bounded metric space and let {Hβ}β∈Γ be a de-
creasing family of nonempty hyperconvex subsets of of M . Then

⋂
β∈Γ Hβ �= ∅ and

is hyperconvex.
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3. The nearest point map

Let C be a closed convex subset of a metric tree M . If for every point x ∈ M
there exists a nearest point in C to x, and if this point is unique, we denote this
point by PC(x), and call the mapping PC the metric projection from M into C. In
a Hilbert space, the metric projections on closed convex subsets are nonexpansive.
In uniformly convex spaces, the metric projections are uniformly Lipschitzian. In
fact, they are nonexpansive if and only if the space is Hilbert. In what follows we
will show that these metric projections on closed convex subsets of metric trees are
nonexpansive. This result is not known in hyperconvex metric spaces. Indeed, one
can show that a nonexpansive retract into an admissible subset always exists which
may not be in general the nearest point projection.

The existence of a nearest point relies on some kind of compactness which reduces
to the reflexivity in the linear case.

Theorem 3.1. Let M be a bounded metric tree. Then C(M) is compact (i.e., for
any family {Cβ}β∈Γ in C(M) such that

⋂
β∈Γf

Cβ �= ∅, where Γf is any finite subset
of Γ, we have ⋂

β∈Γ

Cβ �= ∅

and is in C(M)). Moreover C(M) is uniformly normal.

The compactness of C(M) is a direct consequence of Baillon’s theorem. Indeed,
convex subsets of metric trees are subtrees. Therefore they must be hyperconvex.
The uniform normality of C(M) is also consequence of the hyperconvexity property.
In this case, we have

R(C) = inf
{

sup
x∈C

d(x, c); c ∈ C

}
=

1
2

diam(C)

for any bounded nonempty closed convex subset C.
Next we discuss the proximinality of the closed convex subsets of a metric tree.

Lemma 3.1. If C is a nonempty bounded convex subset of a metric tree M , then
1. For any x ∈ M there exists cx ∈ C such that

d(x, C) = inf{d(x, c); c ∈ C} = d(x, cx).

2. For any x ∈ M , the set PC(x) is a singleton (i.e., PC is single-valued).
Moreover if c ∈ C we have

d(x, PC(x)) + d(PC(x), c) = d(x, c)

(i.e., PC(x) ∈ [x, c] is the unique segment joining x to c).

Proof. 1. Since C is not empty, the number d(x, C) is finite. Let ε > 0; then

Cε = C ∩ B(x, d(x, C) + ε)

is a bounded nonempty closed convex subset of C. The compactness of C(M)
implies that

PC(x) = {c ∈ C; d(x, c) = d(x, C)}
is not empty.

2. We know that PC(x) is not empty. Let cx ∈ PC(x) and c ∈ C. Then, since
M is a metric tree, there exists z ∈ M such that

[c, x] ∩ [c, cx] = [c, z].
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Because C is convex, we have z ∈ [c, cx] ⊂ C. We also have

d(x, z) + d(z, cx) = d(x, cx),

so
d(x, C) ≤ d(x, z) ≤ d(x, z) + d(z, cx) = d(x, cx) = d(x, C),

which obviously implies d(z, cx) = 0 or z = cx. So cx ∈ [x, c], which yields what we
want. Clearly this will imply that PC(x) is reduced to one point.

Next, we discuss another behavior of the retract PC .

Lemma 3.2. Let x, y ∈ M . Set cx = PC(x), cy = PC(y), r(x) = d(x, C) = d(x, cx)
and r(y) = d(y, C) = d(y, cy). We have either

d(cx, cy) = d(x, y) − r(x) − r(y) ≤ d(x, y)

or cx = cy. In particular, PC is nonexpansive.

Proof. Since M is a metric tree, there exists z ∈ M such that [y, x]∩ [y, cx] = [y, z].
Assume z ∈ C, since z ∈ [x, cx]. Based on what we have shown above, we must
have z = cx. So d(x, cx) + d(cx, y) = d(x, y). Since d(cx, cy) + d(cy, y) = d(cx, y),
we get

d(x, cx) + d(cx, cy) + d(cy, y) = d(x, y)
which implies r(x) + d(cx, cy) + r(y) = d(x, y) or

d(cx, cy) = d(x, y) − r(x) − r(y).

Assume that z �∈ C, and consider cz = PC(z). Since z ∈ [cx, x] we get d(x, cx) =
d(x, z) + d(z, cx), and from the above properties we have d(cx, cz) + d(cz, z) =
d(cx, z). So

d(x, z) + d(z, cz) + d(z, cx) = d(x, cx),
which yields

d(x, cz) ≤ d(x, z) + d(z, cz) ≤ d(x, z) + d(z, cz) + d(z, cx) = d(x, cx).

By the definition of PC(x) we get cz = cx. A similar argument will lead to cz =
cx = cy.

The fact that the nearest point projection onto convex subsets of metric trees is
nonexpansive also follows from the fact that this is true in the more general setting
of CAT(0) spaces (see p. 177 of [9]).

The next theorem is crucial for our main result. It shows that convex subsets
are little more than just hyperconvex. They are externally hyperconvex, which was
previously unknown.

Theorem 3.2. If C is a nonempty convex subset of a metric tree M , then C is
externally hyperconvex with respect to M .

In other words, for any (xα)α∈Γ in M and (rα)α∈Γ positive numbers such that

d(xα, xβ) ≤ rα + rβ

and
d(xα, C) ≤ rα

for any α, β ∈ Γ, then
C ∩

( ⋂
α∈Γ

B(xα, rα)
)
�= ∅.
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Proof. First set
PC(xα) = cα

and
r(xα) = d(xα, cα) = d(xα, C)

for any α ∈ Γ. Then for any α, β ∈ Γ we have either

d(cα, cβ) = d(x, y) − r(xα) − r(xβ) ≤ d(x, y)

or cα = cβ . Note that our assumption implies

r(xα) = d(xα, cα) = d(xα, C) ≤ rα.

In both cases we have

d(cα, cβ) ≤ rα + rβ − r(xα) − r(xβ).

Since C is hyperconvex we have

C∗ = C ∩
( ⋂

α∈Γ

B
(
cα, rα − r(xα)

))
�= ∅.

Let c ∈ C∗. Then we have c ∈ C and

d(c, cα) ≤ rα − r(xα)

but
d(xα, c) = d(xα, cα) + d(cα, c) = r(xα) + d(c, cα) ≤ rα.

In other words, we have

c ∈ C ∩
( ⋂

α∈Γ

B(xα, rα)
)
,

which completes the proof of our theorem.

In the next section, we will discuss how using the above results shows the exis-
tence of selections to multivalued maps.

4. Main results

The selection theorem stated here is similar to the main result of [16]. Through-
out this section C(M) denotes the family of all nonempty bounded closed convex
subsets of a metric tree M .

Theorem 4.1. Let M be a metric tree and T ∗ : M → C(M). Then there exists a
mapping T : M → M for which T (x) ∈ T ∗(x) for each x ∈ M and for which

d(T (x), T (y)) ≤ dH(T ∗(x), T ∗(y))

for each x, y ∈ M .

Proof. Let F denote the collection of all pairs (A, T ) such that⎧⎨
⎩

T : A → M,
T (a) ∈ T ∗(a),
d(T (x), T (y)) ≤ dH(T ∗(x), T ∗(y))

for all a ∈ A, and x, y ∈ M . Since ({x}, T ) ∈ F for any choice of x ∈ M and
T (x) ∈ T ∗(x), we have F �= ∅. Define an order relation on F by setting

(A1, T1) 
 (A2, T2) ⇔ A1 ⊂ A2 and T2|A1 = T1.
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Let {(Aα, Tα)} be an increasing chain in (F ,
). Then it follows that (
⋃

α Aα, T ) ∈
F , where T |Aα = Tα. This element is obviously an upper bound of the family
with respect to the defined order. This allows for the use of Zorn’s lemma, which
ensures us of the existence of a maximal element (A, T ) in (F ,
). We claim that
A = M . Assume not and select x0 ∈ M \A. Set Ã = A∪{x0} and consider the set

J =
⋂

x∈A

B
(
T (x); dH(T ∗(x), T ∗(x0))

)
∩ T ∗(x0) .

Since T ∗(x0) is a nonempty closed convex subset of the metric tree M , the results
of the previous section show that J �= ∅ if and only if for each x ∈ A, we have

dist(T (x), T ∗(x0)) ≤ dH(T ∗(x), T ∗(x0)).

Using Lemma 3.1 above, we see that T ∗(x0) is a proximinal subset of M . Therefore
the above statement is true if and only if for each x ∈ A,

B
(
T (x), dH(T ∗(x), T ∗(x0))

)
∩ T ∗(x0) �= ∅.

By the definition of Hausdorff distance, for each ε > 0 we have

T ∗(x) ⊂ NdH(T∗(x),T∗(x0))+ε(T ∗(x0)).

However, we are assuming that T (x) ∈ T ∗(x), so we must have

B
(
T (x), dH(T ∗(x), T ∗(x0)) + ε

)
∩ T ∗(x0) �= ∅.

Since T ∗(x0) is proximinal in M and ε was arbitrary, we get

B
(
T (x), dH(T ∗(x), T ∗(x0))

)
∩ T ∗(x0) �= ∅.

Thus, we conclude that J �= ∅. Choose y0 ∈ J and define

T̃ (x) =

{
y0 if x = x0,

T (x) if x ∈ A .

Since
d(T̃ (x0), T̃ (x)) = d(y0, T (x)) ≤ dH(T ∗(x), T ∗(x0)),

for any x ∈ A, we conclude that
(
A ∪ {x0}, T̃

)
∈ F , contradicting the maximality

of (A, T ); therefore A = M .

As a direct consequence we get the following Michael-type result.

Corollary 4.1. Let M be a metric tree and T ∗ : M → C(M). Assume T ∗ is
continuous; then T ∗ has a continuous selection. Moreover, if M is compact, then
T ∗ has a fixed point (i.e., there exists x ∈ M such that x ∈ T ∗(x)).

The existence of a fixed point is a direct consequence of the main result of [14].
The conclusion of the above theorem will force the selection to inherit some

Lipschitz-type condition. Indeed we have the following.

Corollary 4.2. Let M be a metric tree and T ∗ : M → C(M). Assume T ∗ is a
Lipschitzian mapping; then T ∗ has a Lipschitzian selection T : M → M such that

Lip(T ) ≤ Lip(T ∗).

In particular, if the multivalued map T ∗ is nonexpansive, then a nonexpansive
selection may be found. This will lead to the following theorem.
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Theorem 4.2. Let M be a bounded metric tree and T ∗ : M → C(M). Assume
T ∗ is nonexpansive. Then T ∗ has a fixed point (i.e., there exists x ∈ M such that
x ∈ T ∗(x)). Moreover, the fixed point set of T ∗ is convex.

Proof. To see that the fixed point set Fix(T ∗) is not empty results from the ex-
istence of the fixed point of a nonexpansive selection of T ∗. In order to prove
that Fix(T ∗) is convex, we need to adapt the proof of the main theorem in this
section. Indeed, consider the family F of all pairs (D, T ), where Fix(T ∗) ⊂ D,
and T : D → M , T (d) ∈ T ∗(d) for all d ∈ D, T (x) = x for all x ∈ Fix(T ∗),
and d(T (x), T (y)) ≤ d(x, y) for all x, y ∈ D. By assumption (Fix(T ∗), Id) ∈ F, so
F �= ∅. The argument is now a simple modification of the proof of Theorem 4.1. In
this case we have

Fix(T ) = Fix(T ∗).

Since the fixed point set of nonexpansive maps are convex, we get the desired
conclusion.
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